Total Synthesis of CRM646-A and -B, Two Fungal Glucuronides with Potent Heparinase Inhibition Activities

Ping Wang, Zhaojun Zhang, and Biao Yu*
State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
byu@mail.sioc.ac.cn
Received July 5, 2005

CRM646-A (1) and -B (2), two fungal glucuronides with a dimeric 2,4-dihydroxy-6-alkylbenzoic acid (orcinol p-depside) aglycone showing significant heparinase and telomerase inhibition activities, were synthesized for the first time. The successful approach involved construction of the phenol glucuronidic linkage, via coupling of the orsellinate derivative 27 with glucuronate bromide $\mathbf{7}$, before assembly of the phenolic ester linkage in the depside aglycone. Attempts via direct glycosylation of the depside aglycone derivatives were not successful.

Introduction

CRM646-A (1) and -B (2) were isolated from Acremonium sp. MT70646 in the course of screening for heparinase and heparanase inhibitors. ${ }^{1,2}$ Inhibitory concentrations causing 50% inhibition (IC_{50}) of the hydrolysis of porcine heparin by the heparinase (Sigma) for 1 and 2 occurred at 3 and $10 \mu \mathrm{M}$, respectively; ${ }^{1}$ suramin, ${ }^{3}$ known as a potent inhibitor of melanoma heparanase, showed an IC_{50} value of $5 \mu \mathrm{M}$ in this assay system. The correlation between heparanase inhibition and the inhibition of tumor metastasis ${ }^{4}$ for compounds $\mathbf{1}$ and $\mathbf{2}$ were then examined. Both compounds strongly inhibited the migration of B16-F10 melanoma cells, with IC_{50} values being 15 and $30 \mu \mathrm{M}$, respectively. In addition, CRM646-A (1) showed inhibitory activity against telomerase at a

[^0]dose of $3.2 \mu \mathrm{M} .{ }^{5}$ No cytotoxicity up to $100 \mu \mathrm{M}$ was found for compounds 1 and 2. ${ }^{1}$ Therefore, these two fungal metabolites might be interesting candidates for anticancer therapeutics.

CRM646-A (1) and its methyl ester CRM646-B (2) are novel phenol glucuronides. The aglycone of the dimeric 2,4-dihydroxy-6-alkylbenzoic acid belongs to the orcinol p-depsides family, which are especially common and diverse in lichen genera. ${ }^{6}$ Nevertheless, only a few of the orcinol p-depsides have so far been found in conjugation with sugars in the natural sources; ${ }^{7}$ compounds $\mathbf{1}$ and 2 represent the only depsides bearing a glucuronate residue. Synthetic approaches toward orcinol p-depsides have been extensively studied. ${ }^{6,8}$ However, synthesis of their glycosides has only been reported once. Thus, Dushin and Danishefsky accomplished the synthesis of the galactofuranosides KS-501 and -502 employing glycosylation of a salicylate derivative with a sugar 1,2-epoxide as a key

[^1]step. ${ }^{9}$ Here we report the total synthesis of CRM646-A (1) and -B (2).

Results and Discussion

Glycosidic coupling involving either a glycosyl donor of the glucuronic acid type ${ }^{10}$ or a phenolic acceptor ${ }^{11}$ has long been recognized as a difficult task. Thus, a major challenge in the synthesis of CRM646-A (1) and -B (2) would be construction of the phenol glucuronidic linkage. We planned to explore this glycosidic coupling with a variety of the glycosyl donors. Methyl (2,3,4-tri-O-acetyl-D-glucopyranosyl trichloroacetimidate) uronate 3 (Figure 1) has been found effective in coupling with a few of the phenols under the promotion of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (or TMSOTf). ${ }^{12}$ Its benzyl uronate counterpart 5^{13} should behave similarly but facilitate the final release of the carboxylic acid function by hydrogenolysis under neutral conditions. Glycosyl trifluoroacetimidates are valuable alternatives to the corresponding trichloroacetimidates, ${ }^{14}$ which have shown advantages in sialylation ${ }^{15 a}$ and glycosylation of amides. ${ }^{15 \mathrm{~b}} \mathrm{We}$ therefore also scheduled to examine glucuronidation with trifluoroacetimidates 4 and 6. ${ }^{13}$ In terms of glycosylation of phenols, glycosyl bromides (under either Koenigs-Knorr or phase transfer conditions) have been proven to be the most reliable donors, although the coupling yields might be only moderate. ${ }^{16}$ Thus, methyl 2,3,4-tri-O-acetyl-1-bromo- α-D-glucuronate (7) ${ }^{17}$ was selected as an alternative to the imidates (i.e., $\mathbf{3 - 6}$). In the last resort, we should be able to realize the glycosidic coupling with a glucopyranosyl donor (e.g., 2,3-di- O-acetyl-4,6- O-benzylidene-D-glucopyranosyl trichloroacetimidate, 8$)^{18}$ and then to elaborate the $6^{\prime \prime}$-carboxylic
(9) Dushin, R. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1992, 114, 655-659.
(10) Stachulski, A. V.; Jenkins, G. N. Nat. Prod. Rep. 1998, 173186.
(11) For examples, see: (a) Jensen, K. J. J. Chem. Soc., Perkin Trans. 1 2002, 2219-2233. (b) Du, Y.; Wei, G.; Linhardt, R. J. J. Org. Chem. 2004, 69, 2206-2209.
(12) (a) Fischer, B.; Nudelman, A.; Ruse, M.; Herzig, J.; Gottlieb, H. E.; Keinan, E. J. Org. Chem. 1984, 49, 4988-4993. (b) Hasuoka, A.; Nakayama, Y.; Adachi, M.; Kamiguchi, H.; Kamiyama, K. Chem. Pharm. Bull. 2001, 49, 1604-1608. (c) Nakamura, S.; Kondo, M.; Goto, K.; Nakamura, M.; Tsuda, Y.; Shishido, K. Heterocycles 1996, 43, 27472756.
(13) For the preparation, see: Supporting Information.
(14) For recent applications, see: (a) Zhang, Z.; Yu, B. J. Org. Chem. 2003, 68, 6309-6313. (b) Adinolfi, M.; Iadonisi, A.; Ravidà, A.; Schiattarella, M. J. Org. Chem. 2005, 70, 5316-5319.
(15) (a) Cai, S.; Yu, B. Org. Lett. 2003, 5, 3827-3830. (b) Tanaka, H.; Iwata, Y.; Takahashi, D.; Adachi, M.; Takahashi, T. J. Am. Chem. Soc. 2005, 127, 1630-1631.
(16) For selected examples, see: (a) Needs, P. W.; Williamson, G. Carbohydr. Res. 2001, 330, 511-516. (b) Florent, J. C.; Dong, X.; Gaudel, G.; Mitaku, S.; Monneret, C. J. Med. Chem. 1998, 41, 35723581. (c) Bellamy, F.; Horton, D.; Millet, J.; Picart, F.; Samreth, S.; Chazan, J. B. J. Med. Chem. 1993, 36, 898-903. (d) Dawson, M. I.; Hobbs, P. D. Carbohydr. Res. 1980, 85, 121-129.
(17) Bollenback, G. N.; Long, J. W.; Benjamin, D. G.; Lindquist, J. A. J. Am. Chem. Soc. 1955, 77, 3310-3315.
(18) Zimmermann, P.; Greilich, U.; Schmidt, R. R. Tetrahedron Lett. 1990, 31, 1849-1852.

FIGURE 1. Glycosyl donors 3-8.
acid function via selective oxidation of the $6^{\prime \prime}$ - OH group. ${ }^{19}$
The desired orsellinate derivatives were synthesized starting from 3,5-dihydroxytoluene, adopting modification of the literature transformations (Scheme 1). Thus, formylation of 3,5 -dihydroxytoluene with $\mathrm{DMF} / \mathrm{POCl}_{3}$ gave 2,4-dihydroxy-6-methyl benzaldehyde 9 (80%). ${ }^{20}$ Treatment of aldehyde $\mathbf{9}$ with sodium chlorite $\left(\mathrm{NaClO}_{2}\right)$ in a $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ buffered solution of DMSO and $\mathrm{H}_{2} \mathrm{O}$ provided benzoic acid 10 in a good 77% yield, ${ }^{21}$ which was selectively benzylated to provide benzyl ester 11 with BnBr under the action of KHCO_{3} in DMF (78\%). ${ }^{6}{ }^{\text {a }}$ Alternatively, the 2,4-dihydroxyl groups on aldehyde 9 were protected with methyl groups, providing 12 (100%), which was then oxidized into acid 13 (84\%) under similar conditions used for $\mathbf{9} \rightarrow \mathbf{1 0}$. Blocking the acid function on 13 with a methyl or an ethyl group provided 14a or 14b, which was subjected to LDA (1.5 equiv) followed by alkylation with 1-bromotetradecane (1.4 equiv), respectively. Unexpectedly, the desired alkylation product 15a (from methyl ester 14a) was isolated in a low 28% yield, whereas 15b (from the ethyl ester counterpart 14b) was obtained in a satisfactory 70% yield. In comparison, it was reported that treatment of $\mathbf{1 4 a}$ with LDA and 1-bromotetradecane in the presence of HMPA provided 15a in only 5% yield. ${ }^{22}$ Removal of the O-methyl groups on $\mathbf{1 5 b}$ was achieved with 3.0 equiv of boron tribromide at low temperature $\left(-78 \rightarrow-10^{\circ} \mathrm{C}\right)$, providing diol 16 in 82% yield; the 4-methoxy derivative 17 was also isolated in 17% yield. The possible intermolecular Friedel-Crafts products were not detected.

The depside aglycone 21 and the required benzyl ester 22 were prepared as shown in Scheme 2. To hydrolyze the ethyl ester in 16, we protected the 2,4-hydroxyl groups with benzyl ether first, providing 18, to avoid the decarboxylation side reaction..9,23 Then, treatment of $\mathbf{1 8}$ with KOH in a mixture solvent of DMSO and $\mathrm{H}_{2} \mathrm{O}$ at 90 ${ }^{\circ} \mathrm{C}$ afforded acid 19 in nearly quantitative yield (for two steps). Coupling of acid 19 with phenol 11 under the action of trifluoroacetic anhydride provided the desired

[^2]
SCHEME 1. Preparation of the Orsellinate Derivatives 11 and 16

SCHEME 2. Preparation of Depside 22

phenol ester 20 in excellent yield (94\%). ${ }^{\text {aa }}$ Removal of the three benzyl groups on $\mathbf{2 0}$ by hydrogenolysis over Pd / C afforded the depside aglycone (21) of CRM646-A and -B quantitatively. Depside 21 was readily transformed into its benzyl ester 22 with BnBr in the presence of KHCO_{3} in DMF (89\%).

The 2,2'-phenolic hydroxyl groups in $\mathbf{2 2}$ are hydrogenbonded with the o-carbonyl oxygen, as indicated by the downfielded NMR signals of the hydroxyl protons at 11.66 and 11.35 ppm , respectively. Therefore glycosylation with 22 was expected to take place selectively on the $4-\mathrm{OH}$. Unfortunately, glycosidic coupling between phenol 22 and the trichloroacetimidate/trifluoroacetimidate uronate donors $3-6$ under a variety of conditions in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ or TMSOTf failed to provide the desired glycosides. Complex products were mostly encountered. Treatment of 22 with bromide 7 under either Koenigs-Knorr conditions $\left(\mathrm{Ag}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CN}\right)^{16}$ or under phase transfer conditions (TBAB, $\mathrm{NaOH}, \mathrm{CHCl}_{3}$, $\left.\mathrm{H}_{2} \mathrm{O}\right)^{24}$ led to the cleavage of the phenolic ester bond in 22. As the last resort, glycosylation of 22 (1.2 equiv) with

[^3] 3398.

SCHEME 3. Attempt To Synthesize the Glucuronide via Oxidation

the glucopyranosyl trichloroacetimidate 8 under the promotion of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (0.2 equiv) proceeded smoothly, providing the expected $4-O-\beta$-glycoside 23 in a satisfactory 55% yield. (Scheme 3) To avoid decomposition of the phenolic ester bond during subsequent transformations, the $2,2^{\prime}$-hydroxyl groups on $\mathbf{2 3}$ were protected with benzyl groups ($\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux) to provide $\mathbf{2 4}$ (80%). Treatment of 24 with a catalytic amount of TsOH• $\mathrm{H}_{2} \mathrm{O}$ (0.1 equiv) in $90 \% \mathrm{HOAc}$ at $40^{\circ} \mathrm{C}$ removed the $4^{\prime \prime}, 6^{\prime \prime}-$ O-benzylidene group, ${ }^{25}$ affording diol 25 in a moderate

[^4]
SCHEME 4. Preparation of the Orsellinate

 Derivatives 27 and 30
yield (51\%). Unfortunately, subjection of 25 to the wellstudied TEMPO oxidation protocol ${ }^{19}$ failed to provide the desired glucuronate product. Instead, cleavage of the phenol ester was detected.

Since the above synthetic attempts toward CRM646-A and -B via direct glycosylation of the depside aglycone derivative (i.e., 22) were found futile, we turned our attention to elaborate the phenol ester at a late stage after construction of the phenol glucuronidic linkage. Thus, benzyl 2,4-dihydroxy-6-pentadecanylbenzoate (27) was prepared from acid 19 by removal of the benzyl ether $\left(\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, 99 \%\right)$ and subsequent formation of the benzyl ester ($\mathrm{BnBr}, \mathrm{KHCO}_{3}, \mathrm{DMF}$, rt, 88%). Benzyl 2-(benzy-loxy)-4-hydroxy-6-methylbenzoate (30) was prepared from benzoate ester 11 by selective protection of the $p-\mathrm{OH}$ with a methoxymethyl ether (1.1 equiv $\mathrm{MOMCl}, i-\mathrm{Pr}_{2} \mathrm{NEt}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 92%) followed by blocking the remaining $o-\mathrm{OH}$ with a benzyl ether ($\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux, 89\%) and subsequent removal of the methoxymethyl protection ($6 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}, \mathrm{rt}, 85 \%$). Coupling of phenol 27 with glucuronate bromide 7 was not successful under PTC conditions (TBAB, $\mathrm{NaOH}, \mathrm{CHCl}_{3} / \mathrm{H}_{2} \mathrm{O}$). Fortunately, the glycosidic coupling of 27 with 7 (2.0 equiv) took place under the action of $\mathrm{Ag}_{2} \mathrm{O}$ in $\mathrm{CH}_{3} \mathrm{CN}$ at $35{ }^{\circ} \mathrm{C}$, ${ }^{16}$ providing the desired $4-O-\beta$-glucuronide 31 as the major product, which however could not be separated from the starting bromide 7 (Scheme 5). Subsequent hydrogenolysis of the crude benzyl ester 31 over Pd / C afforded acid 32, which could be readily purified (59% for two steps). Coupling of acid 32 with phenol $\mathbf{3 0}$ (1.5 equiv) in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) and DMAP provided phenol ester 33 in a good 64% yield. ${ }^{9}$ The $2-\mathrm{OH}$ in 33 was blocked with a benzyl ether, providing $34\left(\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}\right.$, acetone, reflux, 79%), to avoid a possible cleavage of the phenolic ester bond in the subsequent hydrolytic removal of the acetyl groups on the glucuronate moiety. At this point we encountered difficulties in removing the acetyl and ester groups. Initial attempts employing $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeOH}$ or $\mathrm{KCN} / \mathrm{MeOH}$ resulted in cleavage of the phenolic ester bond. $\mathrm{DBU} / \mathrm{MeOH}$ or $\mathrm{HCl} / \mathrm{MeOH}$ conditions led to a complex mixture of the products. Fortunately, treatment of $\mathbf{3 4}$ with KOH in a solvent mixture of THF and $\mathrm{H}_{2} \mathrm{O}$ (v/v 4:1) at room temperature afforded glucuronide $\mathbf{3 5}$ quantitatively. Removal of the benzyl groups on $\mathbf{3 5}$ proceeded smoothly under 1 atm H_{2} over Pd / C in methanol, furnishing the target CRM646-A (1) in 93\% yield.

Completion of the synthesis of CRM646-B (2) started from the crude glucuronide $\mathbf{3 1}$ (Scheme 6). Thus, blocking the $2-\mathrm{OH}$ with a benzyl group provided homogeneous $\mathbf{3 6}$

SCHEME 5. Completion of the Synthesis of

 CRM646-A (1)

SCHEME 6. Completion of the Synthesis of CRM646-B (2)

(59\% for two steps). Removal of the acetyl groups was achieved with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH at room temperature, giving $\mathbf{3 7}$ in 78% yield. Hydrogenolysis of $\mathbf{3 7}$ afforded $\mathbf{3 8}$ quantitatively. Acid 38 was coupled with phenol 30 (5.0 equiv) under the action of EDCI and DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, providing the desired phenol ester 39 in a satisfactory 65% yield. Finally, removal of the two benzyl groups on 39 by hydrogenolysis over Pd / C in EtOAc furnished CRM646-B (2) (96\%). Analytic data for the synthetic CRM646-A (1) and -B (2) were in great accordance with those reported for the natural products. ${ }^{1}$

Conclusion

CRM646-A (1) and -B (2), two novel glucuronides with a dimeric 2,4-dihydroxy-6-alkylbenzoic acid (orcinol p depside) aglycone, are potential anticancer agents with significant heparinase and telomerase inhibition activities. Total synthesis of these two fungal metabolites were
achieved for the first time. The successful approach involved construction of the phenol glucuronidic linkage, via coupling of the orsellinate derivative 27 with glucuronate bromide 7, before assembly of the phenolic ester linkage in the depside aglycone. It is remarkable that the phenolic ester linkage in the advanced precursor 34 remained intact in the alkaline conditions for removal of the acetyl and methyl ester groups. In contrast, the previous synthetic attempts via direct glycosylation of the depside derivatives were found futile, mostly because of the decomposition of the phenolic ester linkage. Thus, CRM646-A (1) and -B (2) were synthesized, without optimization of the transformations, in 16 linear steps and 9.1% and 9.5% overall yields, respectively, starting from 3,5-dihydroxytoluene.

Experimental Section

Benzyl 4-O-(Methyl $2^{\prime}, 3^{\prime}, 4^{\prime}$-tri- O-acetyl- β-d-glucopyra-nosyluronate)-2-hydroxy-6-pentadecanyl-benzoate (31). Glycosyl bromide 7 ($169 \mathrm{mg}, 0.426 \mathrm{mmol}$) and phenol 27 (100 $\mathrm{mg}, 0.220 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$, and $\mathrm{Ag}_{2} \mathrm{O}$ ($123 \mathrm{mg}, 1.5 \mathrm{eq}$) was added under an Ar atmosphere at $38^{\circ} \mathrm{C}$. The mixture was stirred for 6 h and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc $=6: 1$) to give the crude 31 (contaminated with inseparable 7) as a white foam. $R_{f} 0.69$ (petroleum ether/EtOAc $=2: 1$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.72(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{~d}, 1$ $\mathrm{H}, J=2.1 \mathrm{~Hz}$), $6.32(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 5.36-5.20(\mathrm{~m}, 7 \mathrm{H})$, $4.21(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}$, $3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.04(\mathrm{~m}, 26 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.8$ $\mathrm{Hz})$. $\operatorname{ESIMS}(\mathrm{m} / z): 793.5\left(\mathrm{M}+\mathrm{Na}^{+}\right), 809.6\left(\mathrm{M}+\mathrm{K}^{+}\right)$. HR-ESIMS (m / z) calcd for $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{O}_{13} \mathrm{Na} 793.3775$, found 793.3770.

4-O-(Methyl $2^{\prime}, 3^{\prime}, 4^{\prime}$-Tri- O-acetyl- $\boldsymbol{\beta}$-d-glucopyranosylu-ronate)-2-hydroxy-6-pentadecanyl-benzoic Acid (32). The crude 31 was treated with $10 \% \mathrm{Pd} / \mathrm{C}(25 \mathrm{mg})$ in EtOAc (5.0 mL) under $1 \mathrm{~atm} \mathrm{H}_{2}$ for 15 h . The mixture was then filtrated and concentrated. The residue was purified by a short silica gel column (petroleum ether/EtOAc $=4: 1$ to $1: 2$) to give 32 ($89 \mathrm{mg}, 59 \%$ for two steps) as a white foam. $[\alpha]^{19}{ }_{\mathrm{D}}=-18.1$ (c $1.00, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.35$ ($\mathrm{s}, 1 \mathrm{H}$) , $5.36-5.21(\mathrm{~m}, 4 \mathrm{H}), 4.23(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 2.92-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 9 \mathrm{H}), 1.55-1.45(\mathrm{~m}, 2 \mathrm{H})$, $1.35-1.20(\mathrm{~m}, 24 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.0,170.0,169.4,169.3,166.8,165.8,160.9$, $150.0,111.9,101.4,97.4,72.5,71.6,70.7,68.9,53.1,36.5,31.9$, 31.7, 29.8, 29.7, 29.6, 29.5, 29.3, 22.7, 20.6, 20.5, 14.1. ESIMS $(m / z): 679.3\left(\mathrm{M}-\mathrm{H}^{-}\right)$. HR-ESIMS (m / z) calcd for $\mathrm{C}_{35} \mathrm{H}_{51} \mathrm{O}_{13}$ 679.3328, found 679.3335 .

Benzyl 4'-(4-O-(Methyl 2",3",4"-Tri-O-acetyl- β-d-glu-copyranosyluronate)-2-hydroxy-6-pentdecanylbenzoy-loxy)-2'-benzyloxy- $\mathbf{6}^{\prime}$-methylbenzoate (33). A solution of acid $32(55 \mathrm{mg}, 0.08 \mathrm{mmol})$ and phenol $30(42 \mathrm{mg}, 0.122 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was treated at room temperature with DMAP ($12 \mathrm{mg}, 1.1$ equiv) and $\operatorname{EDCI}(40 \mathrm{mg}, 2.0$ equiv). After stirring for 4 h , the solution was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The organic phase was washed with water and brine, respectively, and was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc $=6: 1$) to provide $33(53 \mathrm{mg}, 65 \%)$ as a colorless oil. $R_{f} 0.23\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=8: 1\right) ; R_{f} 0.23$ (petroleum ether/ $\operatorname{EtOAc}=4: 1) ;[\alpha]^{19}{ }_{\mathrm{D}}=-10.8\left(c 0.96, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.32(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 10 \mathrm{H}), 6.65(\mathrm{~s}, 2$ H), $6.47(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 6.43(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 5.38-$ $5.26(\mathrm{~m}, 6 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.25(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.00-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3$ H), $2.06(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.20(\mathrm{~m}, 24 \mathrm{H})$,
$0.89(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.0$, 169.6, 169.2, 169.1, 167.3, 166.6, 165.8, 161.1, 156.8, 151.0, $148.9,138.4,136.0,135.6,128.54,128.47,128.39,128.2,128.0$, 127.2, 122.4, 115.6, 112.4, 106.1, 104.3, 101.8, 97.7, 72.8, 71.7, $70.9,70.8,69.0,67.1,52.9,37.1,32.3,31.9,29.9,29.6,29.3$, 22.6, 20.5, 20.4, 19.4, 14.0. ESIMS (m / z): $1033.9\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, $1049.8\left(\mathrm{M}+\mathrm{K}^{+}\right)$. HR-ESIMS (m / z) calcd for $\mathrm{C}_{57} \mathrm{H}_{71} \mathrm{O}_{16} \mathrm{H}$ 1011.4744, found 1011.4737.

Benzyl 4'-(4-O-(Methyl $2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}$-Tri-O-acetyl- β-d-glu-copyranosyluronate)-2-benzyloxy-6-pentadecanylben-zoyloxy)-2'-benzyloxy-6'-methylbenzoate (34). To a solution of $\mathbf{3 3}(64 \mathrm{mg}, 0.063 \mathrm{mmol})$ in dry acetone (5 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(17 \mathrm{mg}, 2.0$ equiv) and $\mathrm{BnBr}(0.1 \mathrm{~mL})$. The mixture was heated to reflux for 12 h . The solution was diluted with EtOAc $(50 \mathrm{~mL})$. The organic phase was washed with water and brine, respectively, and was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Chromatography over silica gel (petroleum ether/EtOAc $=4: 1$) gave $34(54 \mathrm{mg}, 78 \%)$ as a white foam. $R_{f} 0.25$ (petroleum ether/EtOAc $=4: 1)$; $[\alpha]{ }^{19}{ }_{\mathrm{D}}=-7.5\left(c \quad 0.65, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.27(\mathrm{~m}, 15 \mathrm{H}), 6.57(\mathrm{~d}, 1$ $\mathrm{H}, \mathrm{J}=2.1 \mathrm{~Hz}), 6.51-6.48(\mathrm{~m}, 3 \mathrm{H}), 5.40-5.25(\mathrm{~m}, 5 \mathrm{H}), 5.18$ (d, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{~d}, 1 \mathrm{H}$, $J=9.3 \mathrm{~Hz}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.24(\mathrm{~s}, 3$ H), $2.08(\mathrm{~s}, 6 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.20$ (m, 24 H), $0.89\left(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}\right.$). ${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 170.1,169.3,169.2,167.5,166.7,166.1,158.5,157.3$, 156.6, 152.1, 143.7, 138.0, 136.1, 136.0, 135.6, 128.6, 128.4, $128.3,128.1,127.9,127.7,127.3,121.7,118.1,115.7,109.3$, $104.2,99.9,98.7,72.6,71.7,71.0,70.8,70.4,68.9,67.0,53.0$, 33.8, 31.9, 31.3, 29.6, 29.3, 22.6, 20.6, 20.5, 19.4, 14.1. ESIMS $(\mathrm{m} / \mathrm{z}): 1023.5\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, $1039.5\left(\mathrm{M}+\mathrm{K}^{+}\right)$. HR-ESIMS $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{64} \mathrm{H}_{76} \mathrm{O}_{16} \mathrm{Na}$ 1123.5031, found 1123.5026.

Benzyl 4'-(4-O-(β-d-Glucopyranosyluronic acid)-2-ben-zyloxy- 6 -pentadecanylbenzoyloxy) $\mathbf{2}^{\prime}$ 'benzyloxy- 6^{\prime}-methylbenzoate (35). To a solution of $\mathbf{3 4}(60 \mathrm{mg}, 0.054 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=4 / 1)$ was added $\mathrm{KOH}(30 \mathrm{mg})$ at room temperature. After stirring for 4 h , the mixture was acidified to $\mathrm{pH}=3$ with 1 N HCl and was then diluted with EtOAc (50 mL). The organic phase was washed with water and brine, respectively, and was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Chromatography over silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=4: 1\right)$ provided $35(52 \mathrm{mg}, 100 \%)$ as a white powder. $R_{f} 0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH}=4: 1) ;[\alpha]^{20_{\mathrm{D}}}=-30.2\left(c 0.20, \mathrm{CH}_{3} \mathrm{OH}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}-\mathrm{CD}_{3} \mathrm{OD}=1: 1$): $\delta 7.52-7.30(\mathrm{~m}, 15 \mathrm{H}), 6.86$ (d, $1 \mathrm{H}, J=1.5 \mathrm{~Hz}$) , $6.71(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}$), $6.64(\mathrm{~s}, 1 \mathrm{H})$, $6.54(\mathrm{~s}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}$), $5.33(\mathrm{~s}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.13$ (d, 1 $\mathrm{H}, J=7.2 \mathrm{~Hz}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.70(\mathrm{t}$, $1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 3.56(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.20$ $(\mathrm{s}, 3 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.20(\mathrm{~m}, 24 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}$, $J=6.6 \mathrm{~Hz})$. ESI-MS $(m / z): 983.5\left(\mathrm{M}+\mathrm{Na}^{+}\right), 999.4\left(\mathrm{M}+\mathrm{K}^{+}\right)$. HR-ESIMS calcd for $\mathrm{C}_{57} \mathrm{H}_{68} \mathrm{O}_{13} \mathrm{Na} 983.4558$, found 983.4552.

CRM646-A (1). Compound 35 ($50 \mathrm{mg}, 0.052 \mathrm{mmol}$) was treated with $10 \% \mathrm{Pd} / \mathrm{C}(20 \mathrm{mg})$ in $\mathrm{MeOH}(10.0 \mathrm{~mL})$ under 1 $\operatorname{atm} \mathrm{H}_{2}$ for 1 day. The mixture was filtered. The filtrate was concentrated and purified by a short column of silica gel $\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=4: 1: 0.1\right)$, affording CRM646-A $(1,33 \mathrm{mg}, 93 \%)$ as a white solid. $[\alpha]^{20}{ }_{\mathrm{D}}=-41.5\left(c 0.31, \mathrm{CH}_{3} \mathrm{OH}\right) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 10.34$ (br s, 1 H), 6.57 ($\mathrm{s}, 1 \mathrm{H}$), 6.49 ($\mathrm{m}, 3$ H), $5.70-5.20$ (br, 2H), 5.05 (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 3.91$ (d, 1 H , $J=9.0 \mathrm{~Hz}), 3.46-3.30(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}$, $3 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.20(\mathrm{~m}, 24 \mathrm{H}), 0.86(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.3,170.2,166.4,160.8,159.4$, $157.5,152.5,143.4,140.6,116.5,114.3,113.8,108.6,107.4$, $101.5,100.0,76.0,75.8,73.1,71.6,33.7,31.5,31.1,29.2,29.0$, 28.9, 22.3, 21.8, 14.1.

Benzyl 4-O-(Methyl 2',3', $\mathbf{4}^{\prime}$-Tri- O-acetyl- β-d-glucopyra-nosyluronate)-2-benzyloxy-6-pentadecanyl-benzoate (36). To a solution of the crude 31 (prepared from 7 and 100 mg 27) in dry acetone (5 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{mg}$, 2.0 equiv) and $\operatorname{BnBr}(0.1 \mathrm{~mL})$. The mixture was heated to reflux for 12 h and then was diluted with EtOAc (50 mL). The organic phase was washed with water and brine, respectively, and then was
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Chromatography over silica gel (petroleum ether/EtOAc = 4:1) gave $\mathbf{3 6}$ ($112 \mathrm{mg}, 59 \%$ for two steps) as a white foam. $R_{f} 0.25$ (petroleum ether/EtOAc $=4: 1) ;[\alpha]^{20}{ }_{\mathrm{D}}=35.4$ (c 0.65, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta 7.37-7.25(\mathrm{~m}, 10 \mathrm{H}), 6.44(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 6.40$ (d, $1 \mathrm{H}, J=2.1 \mathrm{~Hz}$), $5.33-5.23(\mathrm{~m}, 5 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~s}$, $2 \mathrm{H}), 4.12(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{t}, 2 \mathrm{H}, J=$ 7.5 Hz), 2.09-2.00 (s, 9 H), 1.63 (m, 2 H), $1.30-1.20$ (m, 24 H), $0.89(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $170.0,169.2,169.1,167.7,166.7,158.0,156.8,143.3,136.4$, 135.7, 128.5, 128.4, 128.1, 127.9, 127.1, 109.5, 100.3, 100.0, $72.6,71.8,71.0,70.6,69.0,67.0,52.7,33.7,31.9,31.1,29.6$, 29.5, 29.4, 29.3, 22.6, 20.5, 20.4, 14.0. ESIMS (m / z): 883.4 (M $\left.+\mathrm{Na}^{+}\right)$, $899.4\left(\mathrm{M}+\mathrm{K}^{+}\right)$. HR-ESIMS $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{49} \mathrm{H}_{64} \mathrm{O}_{13^{-}}$ Na 883.4245, found 883.4239.

Benzyl 4-O-(Methyl $\boldsymbol{\beta}$-d-Glucopyranosyluronate)-2-benzyloxy-6-pentadecanyl-benzoate (37). To a solution of $36(100 \mathrm{mg}, 0.116 \mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(10 \mathrm{mg})$ at room temperature. After stirring for 20 min , the solution was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted twice with EtOAc. The organic phase was washed with water and brine, respectively, and was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Chromatography over silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20: 1\right)$ gave $37(67 \mathrm{mg}, 78 \%)$ as a colorless oil. $R_{f} 0.23\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=20: 1\right)$; $[\alpha]^{20}{ }_{\mathrm{D}}=-39.4$ (c 1.20, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 7.45-7.37(\mathrm{~m}, 10$ $\mathrm{H}), 6.74(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 6.62(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 5.32(\mathrm{~s}$, $2 \mathrm{H}), 5.17$ (d, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.6 \mathrm{~Hz}), 3.73(\mathrm{~m}, 4 \mathrm{H}), 3.59-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $7.8 \mathrm{~Hz}), 1.60-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.20(\mathrm{~m}, 24 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}$, $J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 169.6,168.2$, 159.7, 157.4, 143.3, 137.7, 136.9, 129.1, 128.7, 128.5, 128.0, 119.1, 110.0, 101.2, 100.3, 76.6, 76.1, 73.8, 72.0, 70.7, 67.1, 52.4, $34.0,32.4,31.8,30.5,30.2,30.1,30.0,29.5,29.2,29.0,23.1$, 14.2. ESIMS $(m / z): 757.4\left(\mathrm{M}+\mathrm{Na}^{+}\right)$. HR-ESIMS $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{43} \mathrm{H}_{58} \mathrm{O}_{10} \mathrm{Na} 757.3928$, found 757.3922.

Benzyl 4'-(4-O-(Methyl β-d-Glucopyranosyluronate)-2-hydroxy-6-pentdecanylbenzoyloxy)-2'-benzyloxy-6'-methylbenzoate (39). Compound 37 ($50 \mathrm{mg}, 0.068 \mathrm{mmol}$) was treated with $10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ in $\mathrm{EtOAc}(5.0 \mathrm{~mL})$ under 1 atm of H_{2} atmosphere overnight. The mixture was then filtered and concentrated to dryness, affording an amorphous solid 38 $(37 \mathrm{mg})$. A solution of the acid $38(37 \mathrm{mg}, 0.067 \mathrm{mmol})$ and phenol 30 ($112 \mathrm{mg}, 5.0$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ was treated at room temperature with DMAP ($9 \mathrm{mg}, 1.1$ equiv) and EDCI ($25 \mathrm{mg}, 2.0$ equiv). After stirring for 4 h , the solution
was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted twice with EtOAc. The organic phase was washed with water and brine, respectively, and was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Chromatography over silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ $=8: 1)$ provided $39(38 \mathrm{mg}, 65 \%)$ as a colorless oil. $R_{f} 0.23\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{Cl}_{2} / \mathrm{MeOH}=8: 1\right) .[\alpha]^{20}{ }_{\mathrm{D}}=-38.7\left(c 0.90, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 7.46-7.33(\mathrm{~m}, 10 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.83$ ($\mathrm{s}, 1 \mathrm{H}$), 6.59 (d, $1 \mathrm{H}, J=3.3 \mathrm{~Hz}$), 5.38 (s, 2 H), 5.28 (d, 1 H , $J=7.5 \mathrm{~Hz}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 3.75-3.70$ (m, 4 H$), 3.70-3.60(\mathrm{~m}, 3 \mathrm{H}), 2.93(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 24 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=6.8$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 170.1,168.1,164.3$, 162.7, 157.8, 152.8, 148.5, 138.8, 137.7, 137.3, 129.6, 129.5, 129.2, 129.1, 128.6, 116.8, 112.3, 108.8, 105.9, 102.7, 101.0, $77.0,76.6,74.3,72.6,71.6,67.8,52.8,37.2,33.1,32.9,31.0$, $30.8,30.7,30.6,29.9,29.7,29.4,23.6,19.7,14.7$.
CRM646-B (2). Compound $39(21 \mathrm{mg})$ was treated with 10% $\mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ under 1 atm of H_{2} in EtOAc (5.0 mL) for 24 h . The mixture was then filtered. The filtrate was concentrated and purified by a short column of silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=\right.$ 4:1) to afford CRM646-B (2) as a white solid ($16 \mathrm{mg}, 96 \%$). R_{f} $0.23\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=4: 1\right) ;\left[\alpha{ }^{20}{ }_{\mathrm{D}}=-29.7\left(c 0.31, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right)\right.$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 6.58-6.55(\mathrm{~m}, 3 \mathrm{H}), 6.45$ (d, $1 \mathrm{H}, J=1.8 \mathrm{~Hz}$), 5.28 (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 4.22 (d, $1 \mathrm{H}, J$ $=9.6 \mathrm{~Hz}), 3.76-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.74-3.60(\mathrm{~m}, 3 \mathrm{H}), 2.93(\mathrm{t}, 2$ $\mathrm{H}, J=7.8 \mathrm{~Hz}$), $2.65(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.25$ ($\mathrm{m}, 24 \mathrm{H}$) , $0.88(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3}-$ COCD_{3}): $\delta 170.2,165.2,164.4,162.6,153.2,148.5,115.5$, 112.3, 109.1, 108.4, 102.8, 101.1, 77.1, 76.7, 74.3, 72.7, 52.9, $37.2,33.1,32.9,31.0,30.7,30.6,30.5,30.2,29.9,29.7,29.4$, 24.2, 23.6, 14.7. ESIMS (m / z): $703.3\left(\mathrm{M}-\mathrm{H}^{-}\right)$. HR-ESIMS (m / z) calcd for $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{O}_{13} \mathrm{Na} 727.3306$, found 727.3300.

Acknowledgment. This work is supported by the Committee of Science and Technology of Shanghai (04DZ19213, 04DZ14901), the National Natural Science Foundation of China (20321202), and the Chinese Academy of Sciences (KGCX2-SW-209).

Supporting Information Available: Experimental procedures and analytical data for compounds 4-6 and 9-30 and reproductions of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.
JO051384K

[^0]: * To whom correspondence should be addressed. Fax: (0086)-2164166128.
 (1) Ko, H. R.; Kim, B. Y.; Oh, W. K.; Kang, D. O.; Lee, H. S.; Koshino, H.; Osada, H.; Mheen, T. I.; Ahn, J. S. J. Antibiot. 2000, 53, 211-214.
 (2) Ahn, J. S.; Kim, B. Y.; Oh, W. K.; Mheen, T. I.; Ahn, S. C.; Kang, D. O.; Ko, H. R.; Kim, H. M. PCT Int. Appl. WO 2001046385, 2001; Chem. Abstr. 2001, 135:75833.
 (3) Nakajima, M.; Dechavingy, A.; Johnson, C. E.; Hamada, J.; Stein, C. A.; Nicolson, G. L. J. Biol. Chem. 1991, 266, 9661-9666.
 (4) For selected reviews, see: (a) Vlodavsky, I.; Goldshmidt, O.; Zcharia, E.; Atzmon, R.; Rangini-Guatta, Z.; Elkin, M.; Peretz, T.; Friedmann, Y. Sem. Cancer Biol. 2002, 12, 121-129. (b) Parish, C. R.; Freeman, C.; Hulett, M. D. Biochim. Biophys. Acta 2001, 1471, M99-M108. (c) Bame, K. J. Glycobiology 2001, 11, 91R-98R. (d) Dempsey, L. A.; Brunn, G. J.; Platt, J. L. Trends Biochem. Sci. 2000, 25, 349-351. (e) Ferro, V.; Hammond, E.; Fairweather, J. K. MiniRev. Med. Chem. 2004, 4, 693-702.

[^1]: (5) Togashi, K.-I.; Ko, H.-R.; Ahn, J.-S.; Osada, H. Biosci. Biotechnol. Biochem. 2001, 65, 651-653.
 (6) For selected examples, see: (a) Elix, J. A.; Wardlaw, J. H. Aust. J. Chem. 1987, 40, 425-429. (b) Elix, J. A.; Wardlaw, J. H. Aust. J. Chem. 1997, 50, 1145-1150. (c) Elix, J. A.; Wardlaw, J. H. Aust. J. Chem. 1997, 50, 479-486. (d) Elix, J. A.; Wardlaw, J. H. Aust. J. Chem. 1996, 49, 917-924. (e) Elix, J. A.; Barclay, C. E.; Lumbsch, H. T. Aust. J. Chem. 1994, 47, 1199-1203.
 (7) (a) Ondeyka, J. G.; Zink, D. L.; Dombrowski, A. W.; Polishook, J. D.; Felock, P. J.; Hazuda, D. J.; Singh, S. B. J. Antibiot. 2003, 56, 1018-1023. (b) Yasuzawa, T.; Saitoh, Y.; Sano, H. J. Antibiot. 1990, 43, 336-343.
 (8) For a recent example, see: García-Fortanet, J.; Debergh, J. R.; De Brabander, J. K. Org. Lett. 2005, 7, 685-688.

[^2]: (19) Lin, F.; Peng, W.; Xu, W.; Han, X.; Yu, B. Carbohydr. Res. 2004, 339, 1219-1223 and references therein.
 (20) Nielsen, S. F.; Christensen, S. B.; Cruciani, G.; Kharazmi, A.; Liljefors, T. J. Med. Chem. 1998, 41, 4819-4832.
 (21) Nicolaou, K. C.; Rodríguez, R. M.; Mitchell, H. J.; van Delft, F. L. Angew. Chem., Int. Ed. 1998, 37, 1874-1876.
 (22) Bruce, I.; Spencer, R.; Tyman, J. J. Chem. Res., Synop. 1992, 224-225.
 (23) Kato, T.; Hozumi, T. Chem. Pharm. Bull. 1972, 20, 1574-1578.

[^3]: (24) Feng, I. Q.; Sun, J.; Qu, L. Q. Synth. Commun. 2002, 32, 3393-

[^4]: (25) Tsujihara, K.; Hongu, M.; Saito, K.; Kawanishi, H.; Kuriyama, K.; Matsumoto, M.; Oku, A.; Ueta, K.; Tsuda, M.; Saito, A. J. Med. Chem. 1999, 42, 5311-5324.

